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Abstract
Background and aims Plant productivity in drylands
is frequently co-limited by water and nutrient avail-
ability, and thus is expected to be influenced by
ongoing changes in rainfall regime and atmospheric
nutrient deposition. Roadside grasslands are wide-
spread worldwide, represent ecologically meaningful
examples of highly dynamic anthropogenic ecosys-
tems, and are well suited to investigate global change

effects on plant performance. We evaluated the effects
of changes in water and nutrient availability on the
relative dominance and physiological performance of
Bromus rubens, Carduus tenuifolius and Melilotus
officinalis, which belong to contrasting functional
groups (grasses, non-legume forbs and legumes,
respectively).
Methods We conducted a factorial field experiment in
two semiarid roadside grasslands in central Spain with
the following factors: watering (no water addition vs.
watering with 50% of the monthly total precipitation
median) and fertilization (no fertilization vs. addition
of 80 kg Nha−1 year−1). The cover of the species
evaluated, was surveyed over a 2-year period. Plant
isotopic composition (leaf δ13C and δ18O) and
nutrient concentrations (foliar N, P and K) were used
to assess plant ecophysiological performance.
Results Carduus was able to cope with lower water
availability levels through stomatal adjustments with-
out a significant reduction in its relative dominance.
The relative dominance of Bromus was negatively
affected by even moderate water stress, although
elevated nutrient deposition buffered the adverse impact
of drought through a nutrient-mediated enhancement of
plant water use efficiency. Increased nutrient availability
strongly decreased the relative dominance of Melilotus,
irrespective of water availability.
Conclusions Species-specific physiological mecha-
nisms of adjustment to treatments suggest that plant
communities in roadside grasslands will not respond as
a unit to global environmental change. The character-
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ization of species-specific responses to major global
change drivers may improve predictions about the
future dynamics of plant communities in novel
ecosystems such as roadside slopes.

Keywords 13C . 18O . Foliar nutrients . Drought .

Nutrient deposition . Global change . Ruderal species .
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Introduction

Most climate change models for the Mediterranean
Basin forecast not only an increase in temperature, but
also a decrease in the amount of annual rainfall, a
lengthening of drought periods and a reduction of
spring precipitation (IPCC 2007). Increases in water
stress associated to these changes in temperature and
rainfall regime will profoundly affect the composition
and productivity of plant communities, especially in
semiarid environments where soil moisture availability
is critical (Miranda et al. 2009). Nitrogen (hereafter N)
is the most limiting nutrient for plant growth in many
terrestrial ecosystems (Vitousek and Howarth 1991),
although phosphorus (hereafter P) often plays an
important role in co-limiting productivity, especially
in semiarid environments (Morecroft et al. 1994;
Sardans et al. 2004). The global cycles of N and P
have been amplified by c. 100% and c. 400%,
respectively, by post-industrial human activities (Fal-
kowski et al. 2000), mainly due to combustion of fossil
fuels in the case of N (Galloway et al. 2008) and
biomass burning in the case of P (Echalar et al. 1995).
At the global scale, these emissions have increased
atmospheric nutrient deposition at unprecedented rates
(Galloway et al. 2008). As a result, nitrophilous species
(often ruderals) have increased, but other native species
have declined in European grasslands since the mid-
20th century (Bobbink et al. 1998; Lee and Caporn
1998). This pattern could be especially dramatic in
Mediterranean grasslands, because the threshold for N
deposition impacts (increase in ruderal species and
decline in species non adapted to disturbed conditions)
can occur at rather low loads (10–15 kg Nha−1 year−1)
in Mediterranean-type ecosystems (Ochoa-Hueso et al.
2011). Surprisingly, the effects of nutrient deposition
on plant communities have rarely been studied in
grasslands from the Mediterranean Basin (Bobbink et
al. 2010; Ochoa-Hueso et al. 2011).

Interactions between multiple human-driven distur-
bances (e.g. climate change, nutrient deposition or land
use changes) are especially relevant in Mediterranean
ecosystems, which have been intensively transformed by
humans for centuries (UNESCO 1962; Naveh and Dan
1973). Most research on the effects of ongoing global
environmental change (hereafter global change) on
plant species have focused on single drivers, an
approach that overly simplifies the complex responses
of plant species and communities to multiple interacting
drivers (Matesanz et al. 2009; Maestre et al. 2005;
Maestre and Reynolds 2007). Due to such complexity,
and the high frequency of non-additive effects between
water and nutrient availability on plant growth (Maestre
and Reynolds 2007; Matesanz et al. 2009), multifacto-
rial experiments are needed to elucidate potentially
counterintuitive effects of global change drivers (e.g.
climate change and nutrient deposition, Zavaleta et al.
2003) on plant performance.

Nowadays, road construction is among the most
widespread and ecologically meaningful examples of
land use change worldwide (Forman and Alexander
1998). Grasslands dominated by ruderal species usually
establish in roadside margins (Spellerberg 1998), which
cover approximately 1% of most developed countries
(Forman 2000). These highly disturbed environments
have been recently identified as novel and emergent
ecosystems (sensu Hobbs et al. 2006); their artificial
soils and potentially new vegetation compositions differ
significantly from those of nearby natural ecosystems,
and their responses to global change may differ from
those of natural grasslands (Wang 2007). Plant com-
munities in these anthropogenic grasslands are charac-
terized by rapid structural and compositional shifts
(Wali 1999). Since productivity changes occur at rather
low rates in undisturbed semiarid and arid systems
(Reynolds et al. 2007; Matesanz et al. 2009), highly
dynamic anthropogenic grasslands represent an excep-
tional study system to investigate global change effects
upon plant performance in semiarid regions.

Plant water use efficiency (the ratio between carbon
gain and water loss, hereafter WUE) is a useful indicator
of plant performance in dry environments (e.g. Tsialtas et
al. 2001; Querejeta et al. 2003, 2006, 2008). It is usually
modified by drought via its effects on the balance
between photosynthesis and stomatal conductance
(Robinson et al. 2000). The stable carbon isotope
composition of plant tissues (δ13C) provides a time-
integrated proxy of intrinsic WUE (the ratio between
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photosynthesis and stomatal conductance; Dawson et al.
2002) in C3 plant species (Farquhar et al. 1989;
Robinson et al. 2000; Dawson et al. 2002). The stable
oxygen isotope composition of plants (δ18O) provides a
time integrated proxy of stomatal conductance and
transpiration rate during the growing season (Jaggi et
al. 2003; Barbour 2007). The measurement of plant
δ18O greatly aids the interpretation of δ13C data by
providing information about stomatal conductance
independently of the effects of photosynthetic rate on
δ13C (Scheidegger et al. 2000). As WUE usually
increases with higher concentrations of foliar nutrients
(Farquhar et al. 1989; Dawson et al. 2002), the analysis
of plant nutrient status can also aid when interpreting
leaf δ13C data (Querejeta et al. 2006, 2008; Ramírez et
al. 2009). Consequently, leaf δ13C, δ18O and foliar
nutrient concentration measurements (e.g. N, P and K)
can help to evaluate how simultaneous changes in soil
water and nutrient availability will modulate plant
physiological performance.

Studies relating physiological performance to
direct or indirect components of plant abundance
and dominance within the community are biased
towards greenhouse or common garden experiments,
but similar studies of field populations are less
frequent (Casper et al. 2005). The main goal of our
study was to assess the effects of water and nutrient
availability on the physiological performance and
relative dominance of three ruderal plant species
(Bromus rubens, Carduus tenuifolius and Melilotus
officinalis). These species belong to distinct functional
groups (grasses, non-legume forbs and legumes,
respectively). The contrasting resource use strategies
shown by these functional groups in semiarid roadside
grasslands (García-Palacios et al. 2011a) suggest
potentially distinct physiological responses to changes
in soil water and nutrient availability. A 2-year field
experiment was conducted in two semiarid anthropo-
genic roadside grasslands from central Spain (García-
Palacios et al. 2010) to test the following hypotheses: i)
plant species belonging to different functional groups
will exhibit contrasting physiological responses to
changes in water and nutrient availability, with non
legumes showing more positive responses to fertiliza-
tion (Lee et al. 2001), and ii) across plant functional
groups, increases in nutrient availability will enhance
the WUE of ruderal species, thus buffering the
negative impact of reduced soil water availability on
plant performance (Lee et al. 2001).

Materials and methods

Study area

The experiment was conducted at two roadside embank-
ments located in the AP36 and R4 motorways, between
Pinto (Madrid; 40º14′N, 3º43′W) and Corral de
Almaguer (Toledo; 39º45′N, 3º03′W), in the centre
of the Iberian Peninsula (altitude c. 700 ma.s.l.).
The climate is semiarid, with cold winters and a
severe summer drought; annual mean temperature
and total precipitation are 15°C and 450 mm,
respectively (Getafe Air Base climatic station
40º18′N, 3º44′W, 710 ma.s.l., 1971–2000). A meteoro-
logical station (Onset, Pocasset, MA, U.S.A.) was
located in each embankment to get a more detailed
description of the local climatic conditions during the
study. The AP36 site was a recently built embankment,
where construction was finished 3 months prior to the
field surveys. The R4 site was a 3-year old embankment.
The vegetation of the two study sites is dominated by an
annual herbaceous community dominated by fast-
growing species with C3 photosynthetic pathways,
except for two C3–C4 species (Appendix A in
Supplementary Material). The artificial soils of these
embankments were constructed using local parent
material, gravels and components from external sources
stockpiled for a while before road building (information
provided by the road building company). Both sites are
nutrient poor, with low levels of soil organic carbon,
total N and P, scarce soil biological activity and alkaline
pH (Table 1).

Table 1 Main characteristics and soil properties of the two sites
studied at the beginning of the experiment (December 2006).
Numerical values are means ± SE (n=30). A detailed description
on the methodology used to get these data can be found in García-
Palacios et al. (2010)

R4 site AP36 site

Initial plant cover (%) 58 12

Water holding capacity
(ml water g−1 soil)

0.43±0.03 0.36±0.03

Total N (mg Ng−1 soil) 0.34±0.04 0.14±0.01

Total P (mg P g−1 soil) 0.35±0.01 0.16±0.01

Basal respiration
(mg CO2-C g−1 soil day−1)

0.04±0.003 0.01±0.001

Soil organic carbon (g Ckg−1 soil) 9.90±0.09 5.3±0.06

pH 8.06±0.15 8.35±0.14
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Experimental design

We conducted a 2-year field experiment with two
manipulated factors, watering and fertilization, to
simulate the potential effects of changes in rainfall
regime and nutrient (N, P, K) deposition, respectively.
A generalized randomized block design was set up in
each site, with six blocks per site. This design was
chosen to reduce the effect of within-site variation
because of the potential heterogeneity of materials
used for embankment construction. Twelve 1×1 m
plots, with at least 1 m buffer zone each, were
randomly established in each block to obtain three
replicates of each watering × fertilization treatment.

Two levels of watering were applied: no water
addition vs. watering with 50% of the monthly total
precipitation median of the 1971–2000 period. Water-
ing was conducted in four pulses at the end of each
spring month in March, April, May and June in both
2007 and 2008 (i.e. 12, 18, 22, 11 mm, respectively;
Fig. 1). The non-watered plots (low water avail-
ability level) received ambient rainfall (equivalent
to drier conditions), while the watered plots (high
water availability level) received ambient rainfall plus
the added water, irrespectively of the rainfall actually
registered during the experiment (equivalent to wetter
conditions). The oxygen isotopic composition of the
water used for irrigation was nearly identical to that of

Fig. 1 Climatic data (mean
monthly temperature and
rainfall) obtained from the
two meteorological stations
(Onset, Pocasset, MA,
USA) located in the R4 site
(a) and AP36 site (b). White
bars represent the increment
in ambient monthly rainfall
by the irrigation treatment
(equivalent to a 50%
increase of the monthly total
precipitation median from
the 1971–2000 period)
applied from March to
June in both 2007 and 2008.
Grey bars represent the
ambient rainfall recorded by
the meteorological stations
in both years (equivalent
to a 0% increase of the
monthly total precipitation
median from the
1971–2000 period)
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rain water at both study sites (Table 2). With this
watering scheme we aimed to simulate the effects of a
reduction in total annual precipitation, by decreasing
water availability during spring and early summer in
the non-watered plots (compared to the watered plots),
as predicted by the most likely climate change
scenarios for the Mediterranean Basin (IPCC 2007).
Furthermore, spring is considered the period of
maximum impact of weather conditions on plant
physiology and isotopic composition in Mediterranean
ecosystems (Damesin et al. 1997). Although our
experiment did not include rainfall exclusion treat-
ments, the approach we followed has been effectively
tested to simulate climate change scenarios in
Mediterranean regions (Zavaleta et al. 2003; Matesanz
et al. 2009; Soliveres et al. 2011). In November 2007,
we placed 16 ECH2O humidity sensors (Decagon
Devices Inc., Pullman, USA) in the soil at a depth of
5 cm at the R4 and AP36 sites to assess the effects of
watering on soil moisture dynamics during the study
period (2 sites × 2 watering levels × 4 replicates).
These measurements were recorded every 90 min.

Fertilization consisted of two levels of a slow-release
N:P:K (16:11:11) inorganic fertilizer addition (Scott
Corp.). Fertilized plots received 80 kg Nha−1 year−1 in
December 2006 and January 2008. Control plots were
not fertilized. Although this rate is considerably higher
than the predicted scenarios of N deposition for the
Mediterranean Basin in 2050 (20 kg Nha−1 year−1;
Phoenix et al. 2006), our objective was to maximize
the contrast between treatments in order to obtain clear
responses to nutrient deposition. Further, N deposition
from vehicle emissions represents an important extra N
input to the nearby roadside grasslands (Cape et al.
2004), and hence high fertilization rates are needed to
get a contrast between fertilized and non fertilized

plots. As the fertilizer included N, P and K, we cannot
refer exclusively to N deposition, and therefore this
experimental treatment simulates a general nutrient
deposition scenario. Similar rates of soil inorganic
slow-release fertilization have been used to simulate
nutrient deposition in grasslands worldwide (Morecroft
et al. 1994; Zavaleta et al. 2003; Dukes et al. 2005).

Sample selection, isotopic composition
and nutrient concentration

Plant samples were collected in June 2008, at the end
of the growing season; this month correspond to the
optimal phenologicalmoment tomeasure the herbaceous
communities studied (García-Palacios et al. 2010). The
total cover of each species was visually estimated by
the same observer as an indirect measure of plant
biomass (Carson and Pickett 1990; Myster and Pickett
1992; Flombaum and Sala 2009). The total cover of
each species was measured independently of that of
other species, and the sum of the total covers of all the
species in a plot can exceed 100% (Stevens and Carson
2001). This method can led to misleading conclusions
when estimating community biomass, but it is a good
predictor for individual plant species biomass (Stevens
and Carson 2001). The most dominant species in terms
of plant cover in spring 2008 were Melilotus officinalis
at the AP36 site and Carduus tenuifolius and Bromus
rubens at the R4 site (27, 32 and 24% species cover,
respectively; Appendix A. See García-Palacios et al.
2010 for further information). These dominant
species (B. rubens, C. tenuifolius and M. officinalis)
belong to three distinct plant functional groups
(grasses, non-legume forbs and legumes, respectively)
with contrasting resource use strategies in semiarid
roadside grasslands (García-Palacios et al. 2011a). The
relative species cover (percent species cover relative to
the total community cover) was also calculated as a
surrogate of species dominance and competitive ability
within the community (Sala et al. 1996).

In each 1×1 m plot, we harvested two green, fully
developed leaves per individual to get a composite
species sample per plot and dominant species. When
no individual of these species occurred in a plot (as
happened in two blocks with M. officinalis and in one
block with B. rubens) the entire block was discarded
for further analysis. Leaf samples were dried (80°C,
48 h) and ground to fine powder using a ball mill. All
stable isotope and N concentration analyses were

Table 2 δ18O of the rain water collected from March to June in
2008 at both the R4 and AP36 sites, and of the watering for the
same period. The oxygen isotope signature is expressed relative
to the internationally accepted standard (Vienna Standard Mean
OceanicWater, VSMOW)

Rain—R4 Rain—AP36 Watering

March −5.58±0.11 −5.74±0.03 −5.53±0.28
April −6.33±0.17 −6.20±0.02 −6.29±0.05
May −6.20±0.02 −6.02±0.06 −6.25±0.06
June −6.14±0.08 −6.54±0.03 −6.32±0.13

Plant Soil (2012) 352:303–319 307



conducted at the Stable Isotope Facility of the
University of California-Davis. Leaf δ13C was analyzed
using a PDZ Europa ANCA-GSL elemental analyzer
interfaced to a PDZ Europa 20–20 isotope ratio mass
spectrometer (Sercon Ltd., Cheshire, UK). The standard
was Pee Dee Belemnite. Foliar N concentration was
analyzed using the same PDZ Europa ANCA-GSL
elemental analyzer. Leaf δ18O was analyzed using a
Heckatech HT Oxygen Analyzer interfaced to a PDZ
Europa 20–20 isotope ratio mass spectrometer
(Sercon Ltd., Cheshire, UK). The oxygen isotope
signature is expressed in δ18O, relative to the interna-
tionally accepted standard (Vienna Standard Mean
OceanicWater, VSMOW). Foliar P and K concentra-
tion were analyzed by atomic absorption spectrometry
(Perkin Elmer ICP-OES 6500, Norwalk, USA).

Statistical analyses

We evaluated the effects of fertilization and watering
on leaf δ13C, δ18O, foliar N, P and K concentrations,
and on the total and relative cover of each of the three
species separately, using a three-way nested ANOVA

model. We used block as between plot factor
(random), and fertilization and watering as within
plot factors (both of them fixed). Although we
conducted a large number of statistical tests, P values
were not adjusted for multiple testing as this approach
is considered overly conservative (Gotelli and Ellison
2004). Linear regressions were used to evaluate the
relationships between δ13C and δ18O, and between
plant isotopic composition and foliar N, P and K
concentrations. Prior to these analyses, data were
tested for assumptions of normality and homogeneity
of variances, and were log-transformed when necessary.
Statistical procedures were carried out using SPSS
version 14.0 (SPSS Inc., Chicago, IL, USA).

Results

Unfortunately, 2008 was a rainy year in the study area
(Fig. 1). As a consequence, soil moisture content was
maintained at relatively high levels in both watered
and non-watered plots throughout the experimental
period (Fig. 2). Despite this limitation, soil moisture
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Fig. 2 Effects of the water-
ing treatment on soil moisture
dynamics during the study
period in the R4 (a) and
AP36 sites (b). Data
represent daily means in four
randomly selected watered
and non-watered plots
at each site
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content during the spring months was indeed higher
in watered than in non-watered plots at both sites,
although this difference was larger at the AP36 site
than at the R4 site.

Total plant community cover was significantly
affected by the watering treatment at the R4 site
(F1, 5=15.53; P=0.011), being higher in the watered
(71%±4.3, mean±SE, n=36) than in the non-
watered plots (66%±4.2, mean±SE, n=36), but
was not affected by the fertilizer addition treatment.
Neither watering, nor fertilizer addition or their
interaction, affected total plant community cover at
the AP36 site.

Whereas the total cover of Bromus at the R4 site was
not affected by the experimental treatments, the relative
cover of this species was about 12% higher in the
watered plots and 11% higher in the fertilized plots.
However, only the effect of watering was statistically
significant (Table 3; Fig. 3). Fertilization significantly
increased the leaf δ13C of this grass species, but not its
leaf δ18O (Table 3; Fig. 4). We did not find any
significant treatment effects on the foliar N, P or K
concentrations in Bromus (Table 3; Fig. 5). Foliar δ13C
was related with neither δ18O nor leaf N concentration
in this species (Figs. 6a and 7a, respectively).

Neither the total nor the relative cover of Carduus
were affected by the experimental treatments at the
R4 site (Table 3). The leaf δ13C of this species was

not significantly influenced by the experimental
treatments, but leaf δ18O was higher in the non-
watered plots (Table 3; Fig. 4). We did not find any
significant treatment effects on the foliar N, P or K
concentrations of Carduus (Table 3; Fig. 5). Across
experimental treatments, leaf δ13C of this species was
strongly and positively related to both leaf δ18O and
foliar N concentration (Figs. 6b and 7b, respectively).

While the total cover of Melilotus was not
significantly affected by the experimental treatments
at the AP36 site (Table 3), the relative cover of this
legume was about 57% higher in non-fertilized than
in fertilized plots (Fig. 3). Leaf δ13C, δ18O and foliar
N, P and K concentrations in this species were not
significantly affected by the experimental treat-
ments (Table 3). Across treatments, leaf δ13C of
Melilotus was not related to δ18O (Fig. 6c), but leaf
δ13C was strongly and negatively associated with
foliar N, P and K (Fig. 7c, r2=0.102; P=0.037, r2=
0.235; P=0.001, respectively).

Discussion

The relative dominance of three key plant species
belonging to contrasting functional groups (grasses,
non-legume forbs, legumes) was affected very differ-
ently by the simulated changes in rainfall regime and

Table 3 Summary of the three-way nested ANOVA model for
main treatment effects and interactions on the total (TSC) and
relative (RSC) species cover, leaf δ13C, δ18O and foliar N, P
and K concentrations of Bromus rubens, Carduus tenuifolius
and Melilotus officinalis in June 2008. Values represent the F

statistic. * P values <0.05. Block (random factor) was not
included in the table as it only has interest for F calculations.
Bromus rubens and Carduus tenuifolius were located in the R4
site and Melilotus officinalis in the AP36 site

Source of variation (d.f.) TSC RSC 13C 18O Foliar N Foliar P Foliar K

Bromus rubens

Watering (1, 4) 0.89 9.65* 0.88 0.92 0.3 0.19 1.41

Fertilization (1, 4) 0.03 1.17 14.01* 0.27 0.18 0.15 0.47

Irrigation x fertilization (1, 4) 0.43 0.21 0.42 0.85 0.38 2.43 4.09

Carduus tenuifolius

Watering (1, 5) 4.51 0.57 3.901 14.41* 5.68 0.56 0.04

Fertilization (1, 5) 0.19 4.92 0.235 4.06 2.08 1.51 0.76

Irrigation x fertilization (1, 5) 1.05 1.58 0.27 0.05 0.88 4.57 5.32

Melilotus officinalis

Watering (1, 3) 0.03 0.01 0.01 0.72 0.01 0.56 0.99

Fertilization (1, 3) 2.51 12.43* 3.83 1.98 0.58 0.5 0.44

Irrigation x fertilization (1, 3) 3.51 2.8 3.65 0.45 2.93 6.31 4.98
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nutrient deposition, suggesting species-specific
responses to the ongoing global change. In addition,
species-specific physiological mechanisms of adjust-
ment to simulated changes in rainfall and nutrient
deposition further suggest that plant communities in
anthropogenic roadside grasslands will not respond as
a unit to global change, as suggested by previous
studies (Zavaleta et al. 2003; Maestre et al. 2005;
Maestre and Reynolds 2007).

Interestingly, total plant community cover was
significantly enhanced by watering only at the R4
site, probably because much lower soil fertiliy at the
AP36 site (Table 1) may have constrained the
vegetation growth response to watering. Species-
specific responses to wateringmay have also contributed

to this differential response, as the plant community was
dominated by different species at each site (i.e., Bromus
and Carduus at R4 vs. Melilotus at AP36 site). Higher
plant cover in watered than in non-watered plots at the
R4 site may have accelerated depletion of surplus soil
moisture after irrigation through enhanced transpira-
tion, which may explain the smaller differences in soil
water content between watered and non-watered plots
(compared to the AP36 site where plant cover was
unaffected by the watering treatment).

The higher (isotopically enriched) leaf δ18O values
of Carduus in the non-watered treatment strongly
suggest that even moderate moisture stress caused a
reduction of stomatal conductance in this species.
Numerous studies have shown that leaf δ18O provides
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a time-integrated proxy for stomatal conductance and
cumulative transpiration over the entire growing
season, with higher leaf δ18O values indicating lower
stomatal conductance (e.g. Barbour et al. 2000;
Grams et al. 2007; Cabrera-Bosquet et al. 2009a,
2011). In this regard, it is important to note that the
oxygen isotopic composition of the water used for
irrigation in this study was nearly identical to that of
rain water (Table 2), so differences in plant δ18O
between treatments cannot be plausibly attributed to
lack of similarity in the isotopic composition of
source water (Barbour 2007). Variations in the
degree of evaporative isotopic enrichment of soil
water between treatments are likewise unlikely,
because environmental conditions (aspect, slope,
radiation levels) and plant cover were quite similar
in all the treatments.

According to current conceptual models for the
joint interpretation of plant δ13C and δ18O data
(Scheidegger et al. 2000; Grams et al. 2007), increased
leaf δ18O combined with a smaller (non significant)
increment in leaf δ13C observed in Carduus under a
reduced rainfall scenario (Fig. 4) indicate a decrease in
stomatal conductance with a small decrease or no
change in photosynthetic activity. The slope of the
δ13C–δ18O relationship indicates to what extent sto-
matal limitation is driving shifts in δ13C (Scheidegger
et al. 2000). A positive relationship means that the ratio
of intercellular to ambient CO2 concentration decreases
as a result of reduced stomatal conductance,
while photosynthesis remains relatively less affected.
The strong positive association between leaf δ13C and
δ18O observed in Carduus across treatments (Fig. 6b)
suggests that tight stomatal control of both transpira-
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tion and photosynthesis may allow this forb species to
readily adjust to moderately different water availability
scenarios through effective fine tuning of WUE.
Further, we found positive associations of foliar N
concentration with leaf δ13C (Fig. 7b) and of foliar N
and P concentrations with δ18O (r2=0.160; P<0.0001
and r2=0.113; P=0.011, respectively) across treat-
ments. These results suggest that increasing foliar N
and P concentrations to achieve enhanced WUE under
drier scenarios may help Carduus to counterbalance
the negative effects of decreased stomatal conductance
on photosynthetic activity, which is in accordance with
the leaf economics spectrum hypothesis (Wright et al.
2004; Prentice et al. 2011). This nutrient-mediated
mechanism of adaptation to drought is widespread
among C3 plant species, which often increase their
foliar N concentrations in response to low moisture
availability (Prentice et al. 2011). The positive associ-
ations between leaf δ13C and total and relative Carduus
cover across treatments (r2=0.162; P<0.0001, r2=
0.074; P=0.021, respectively) further support an
effective physiological adjustment (through enhanced
WUE) to moderate water stress in this species. The
total and relative cover of Carduus were unaffected by
the experimental treatments, suggesting that this
species has the ability to successfully cope with
moderate moisture stress through effective stomatal
adjustments, which translates into a maintenance of its
relative dominance within the plant community. In
addition, it should be noted that this species has an
earlier phenology than the majority of co-occurring
species in this anthropogenic grassland (García-
Palacios, personal observation), which may help it
gain further competitive advantage in annual plant
communities (Grime 2001). This advantage could be
especially relevant under scenarios of reduced spring
rainfall predicted by climate change models for the
Mediterranean Basin (IPCC 2007).

Our results show that Bromus is highly vulnerable
to even moderate reductions in soil water availability,
as indicated by significantly lower relative cover in
the non-watered plots, thus supporting the results
found by Kardol et al. (2010) for the same species.
On the other hand, Bromus increased its leaf δ13C
while keeping its δ18O constant in the fertilized plots,
which suggests a sharp increase in the WUE of this
grass species under an elevated nutrient deposition
scenario (Lee et al. 2001). According to current
conceptual models (Scheidegger et al. 2000; Grams

et al. 2007), the observed increase in WUE in
fertilized plots must be the result of a strong
nutrient-mediated stimulation of photosynthetic
capacity in Bromus, with little or no change in
stomatal conductance (Dawson et al. 2002; Wright
et al. 2004). An increase in WUE with fertilization
might explain the observed trend towards higher
relative cover by this species, and hence dominance,
in the fertilized plots (Fig. 3b; Ehleringer et al. 1992;
Tsialtas et al. 2001). Interestingly, the negative effect
of lower soil water availability on the relative cover and
dominance of Bromus in non-watered plots was largely
counterbalanced by this nutrient-mediated stimulation
of WUE in fertilized non-watered plots (Fig. 3b). These
results strongly suggest the existence of counteracting
effects of two major global change drivers (namely,
reduced rainfall and increased nutrient depositon; Sala
et al. 2000) on the performance of Bromus.

Fertilizer addition caused a 40% decrease in the
relative species cover of Melilotus at the AP36 site,
irrespective of soil water availability (Table 3; Fig. 3b).
It is widely acknowledged that the competitive
advantage of legumes decreases sharply when high
soil fertility precludes the benefits of N fixation
(Bobbink et al. 1998; Suding et al. 2005; Skogen et
al. 2011), as is the case under elevated nutrient
deposition scenarios. Lee et al. (2001) reported that
leaf N content, photosynthesis and water use efficiency
actually decreased in response to high soil N treatments
in several legume species. Although the concentrations
of foliar nutrients or the carbon and oxygen isotopic
values of Melilotus were not significantly affected by
the experimental treatments, leaf δ13C was strongly
and negatively associated with foliar N, P and K
concentrations across treatments, suggesting that high
leaf δ13C may be an indication of nutritional or
physiological stress in this species. In sharp contrast
to non-fixer plant species, N-fixing species (legumes or
actinorhizal) in semiarid ecosystems often show
unchanged or even decreased δ13C and WUE in
response to improved nutrient availability or status
(Lee et al. 2001; Querejeta et al. 2003, 2007). Our
results indicate that Melilotus may experience a
dramatic decrease in relative cover and dominance in
these semiarid anthropogenic grasslands under
enhanced nutrient deposition. In this scenario, the
competitive ability of this early colonizer species
(Merlin et al. 1999) decreases sharply, which may
accelerate species replacement and enhance plant
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community diversity during the early-successional
stages of semiarid roadside grasslands. This interpreta-
tion is supported by the strong positive effect of
fertilizer addition upon the Shannon’s diversity index
(67% increase) in this roadside grassland dominated by
Melilotus (García-Palacios et al. 2010).

Our study is not without limitations, mainly the
indirect simulation of drier conditions used to
approach changes in rainfall regime predicted by
global change in Mediterranean semiarid areas (IPCC
2007). Soil moisture content was relatively high in
both watered and non-watered plots throughout the
experimental period due to unusually rainy conditions
during 2008, thus reducing the effectiveness of our
experimental approach. Nevertheless, the relative
dominance and the isotopic composition of the target
plant species did respond to the watering treatments
evaluated, suggesting that even stronger responses
could be expected with larger differences in water
availability between treatments, as found for instance
by Peñuelas et al. (2000) in Mediterranean woody
ecosystems subjected to partial rainfall exclusion.
As in other recent studies (e.g. Bassin et al. 2009),
our interpretation of δ13C and δ18O data relies on
current conceptual models (Scheidegger et al. 2000;
Grams et al. 2007) and empirical studies establishing
relationships between changes in plant isotopic
composition and corresponding changes in leaf-
level photosynthesis, stomatal conductance and
water use efficiency in similar herbaceous species
(e.g. Barbour et al. 2000; Jaggi and Fuhrer 2007;
Cabrera-Bosquet et al. 2009b, 2011). However, as these
relationships have not been directly evaluated for the
particular set of species included in this study, our
interpretation of isotopic data should be taken with
some caution (e.g. Cernusak et al. (2009) found strong,
weak or even no relationships between isotopic and
leaf gas exchange variables in different tropical tree
species). Finally, additional studies including more
than one species of each plant functional group should
be conducted in order to evaluate the magnitude of
between vs. within functional group variation in plant
physiological responses to global change drivers.

Collectively, our results indicate that three
dominant ruderal species belonging to contrasting
plant functional groups showed strongly species-
specific responses to changes in soil water and
nutrient availability. Whereas the lower soil water
availability levels predicted by climate change

models for the Mediterranean region will likely
increase vegetation water stress and decrease net
primary productivity (Miranda et al. 2009), some
dominant ruderal species (e.g. Carduus) may be able
to cope with this limitation without a significant
reduction in their competitive ability and relative
dominance. However, other species (e.g. Bromus)
are strongly negatively affected by even moderate water
stress, and could significantly decrease its relative
dominance under low water availability scenarios.
Increased nutrient (particularly N) deposition could
decrease the competitive ability of currently dominant
legume species in many anthropogenic ruderal grass-
lands. By contrast, elevated atmospheric nutrient depo-
sition could buffer or even counterbalance the negative
effects of decreased soil water availability on the
performance of some non-legume species through a
nutrient-mediated enhancement of water use efficiency
(Lee et al. 2001). The three species evaluated in this
study are dominant in the early-successional stages
of semiarid roadside grasslands, promote both
positive and negative effects upon plant community
diversity (García-Palacios et al. 2010), and can
cause profound changes in soil nutrient cycling
(García-Palacios et al. 2011b).

In conclusion, the characterization of species-
specific responses to major global change drivers
may improve predictions about the future composition
and dynamics of plant communities in novel ecosys-
tems, as well as the potential effects of global change
upon ecosystem functioning. The results of this study
also highlight the importance of simultaneously
considering several relevant global change drivers,
such as rainfall regime and nutrient deposition, to
better understand the net effects of global change on
human-disturbed ecosystems.
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